はじめまして,YAS_YASと申します.m(_ _)mペコ
某社の技術職をしています. 数学が苦手なので,このサイトでいつも勉強させて頂いております.
この数日間, googleなどのネット情報,本屋,図書館など考えられる限りの文献を 当たってみたのですが,解決の糸口が見つからないので投稿させて頂きました.
悩んでいる問題ですが, このサイトの「物理数学/変分法2」で取り上げている 「色々な変形オイラー方程式」の7番です
この項では,それまで1つだった独立変数を2つに拡張した場合のオイラー方程式を 扱っており,汎関数を次式としてしています.
ここで, が独立変数で, は従属変数です.
の微小な変化を, 任意の微小量 と任意の関数 を使って
としているので, の による偏微分 も従属変数になります.
汎関数の<tex?epsilon</tex> による微小変化を使って,停留値問題に持ち込んでおり
として,右辺の第二項,第三項を で部分積分する流れになっています.
ここまでは従来通りの流れなので,ついていけたのですが, 重積分の部分積分をした次の式で,わたしの理解が破たんしました. (重積分の部分積分をした経験はわたしにはありません)
まず,第一項の中身ですが,従来ならば
のように,右側の項は積分された形になり,第三項の
の に対応しなければ, 後で について括りだせないはずです.ところが実際は
のように,逆に でさらに偏微分した形になっています.
また,積分範囲が の範囲だけで,
のようになされているのですが,このとき 側の積分範囲の扱い はどうなるのでしょう? 項自体は定数になるはずなので,項中の には の値が何らかの形で入るはずと思われるのですが, 内は1項しか存在してないので, を代入した項, を代入した項と分かれているいるわけでもないようです. また,単に という係数が掛けられているわけでもないので どのように扱われているのかもわかりません. 右辺,第二項についても同様のことが言えます.
調べた文献では, 境界条件としてあらかじめこの の項が消去されているか, まったく触れずに,消去されているかのどちらかで取り付く島がありませんでした. そもそも,端点が固定されていても <tex>eta<tex>の端点における 二階偏微分の値が0になる保証はないと思うのですが.
以上,長文となってしまって恐縮ですが, 質問の究極部分は
『重積分の部分積分の仕方をご教示ください』
ということになりますが,以上に挙げた疑問点も加えてまとめると
2) の積分範囲は1つの独立変数のものだが,もう片方の扱いは? 3)端点を固定しているという境界条件だけでは, を0にするには無理がないか?
ということになります.
ご教示のほど,よろしくお願いいたします.m(_ _)m
スイマセン,YAS_YASですが,
はじめてなもので,文章のあちこちが間違えている上に, パスワードを設定し忘れて,削除も出来ない状態になってしまいました.
改めて投稿したいと思います.
管理人様へ お手数ですが,本記事を削除して頂けるとありがたいです.
以上,よろしくお願いいたします.